Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong Zhang, ${ }^{\text {a }}$ Hong-Bo Tong, ${ }^{\text {b }}$ Dian-Sheng Liu, ${ }^{\text {b }}$ * Mei-Su Zhou ${ }^{\text {b }}$ and Su-Ping Huang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Shanxi University, Shanxi, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Modern Chemistry,
Shanxi University, Shanxi, People's Republic of China

Correspondence e-mail: tong@sxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.064$
$w R$ factor $=0.127$
Data-to-parameter ratio $=18.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis[η^{3}-2-tert-butyl-1,3-bis(trimethylsilyl)-1-azaallyl]cobalt(II)

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{NSi}_{2}\right)_{2}\right]$, is a homoleptic metal $-\eta^{3}$-azaallyl complex, which has a center of symmetry. The $\mathrm{Co}-\mathrm{C}$ bond distances are 2.100 (4) and 2.068 (4) \AA, and the $\mathrm{Co}-\mathrm{N}$ bond distance is 1.878 (3) \AA.

Comment

Metal- η^{3}-allyl complexes are well known to play an important role in many metal-mediated reactions (Blystone et al., 1989). Recently, metal 1-azaallyl complexes have attracted attention because of their synthetic utility in $\mathrm{C}-\mathrm{C}$ bond formation (Caro et al., 2001). As part of an investigation of the chemical and physical properties of metal- η^{3}-azaallyl complexes, we have prepared the title complex, (I), and present its structure here (Fig. 1). The structure of the related compound, a homoleptic Co $-\eta^{3}$-allyl complex, bis[1,3-bis(trimethylsilyl)allyl]cobalt(II), was reported by Smith et al. (2004).

(I)

The centrosymmetric title complex contains two azaallyl ligands bound in an η^{3} manner to the $\mathrm{Co}^{\mathrm{II}}$ atom, with $\mathrm{Co}-\mathrm{C}$ bond lengths of 2.100 (4) and 2.068 (4) \AA, and a $\mathrm{Co}-\mathrm{N}$ bond length of 1.878 (3) \AA (Table 1). The ligand forms a non-planar four-membered ring ($\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{Co}$); the dihedral angle between the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{Co}$ and $\mathrm{C} 6 / \mathrm{C} 1 / \mathrm{Co}$ planes is $47.2(3)^{\circ}$. Although the C and N atoms of the azaallyl group are $s p^{2}$ hybridized and involved in a conjugated system, the $\mathrm{N} 1-\mathrm{C} 1$ bond $[1.352$ (5) \AA] has double-bond character.

Experimental

The title complex was synthesized according to literature methods (Hitchcock et al., 2000, 2003; Avent et al., 2004). To a solution of trimethylsilylmethyllithium (6 mmol) in diethyl ether $(20 \mathrm{ml})$ distilled over sodium, tert-butyl nitrile (6 mmol) was added at ca 273 K and the solution was stirred for 15 min and then for 5 h at room temperature.

Received 5 January 2006
Accepted 6 February 2006

To the solution, $\mathrm{CoCl}_{2}(3 \mathrm{mmol})$ was added at $c a 200 \mathrm{~K}$ and the suspension was stirred for 15 min and then for 5 h at room temperature. The suspension was filtered and the filtrate was concentrated under a vacuum until red crystals of the title compound appeared. All experiments were performed under an argon atmosphere using Schlenk apparatus.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{NSi}_{2}\right)_{2}\right]$
$M_{r}=544.00$
Monoclinic, $C 2 / c$
$a=15.744(3) \AA$
$b=11.599(2) \AA$
$c=17.684(4) \AA$
$\beta=90.85(3)^{\circ}$
$V=3229.0(11) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.115 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2965 \\
& \quad \text { reflections } \\
& \theta=2.2-25.7^{\circ} \\
& \mu=0.69 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.20 \times 0.20 \times 0.10 \mathrm{~mm} \\
& \\
& \\
& 2846 \text { independent reflections } \\
& 2406 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.054 \\
& \theta_{\text {max }}=25.0^{\circ} \\
& h=-18 \rightarrow 18 \\
& k=-13 \rightarrow 13 \\
& l=-21 \rightarrow 15
\end{aligned}
$$

Data collection

Siemens SMART CCD area-

detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.874, T_{\text {max }}=0.934$
6478 measured reflections

Refinement

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0001 P)^{2}\right.$
$+17.1263 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}$

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.127$
$S=1.19$
2846 reflections
151 parameters
H -atom parameters constrained

Figure 1
A molecular view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Unlabeled atoms are related to labeled atoms by $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.

The authors thank the Natural Science Foundation of China (Nos. 20171030 and 29872024), the Natural Science Foundation of Shanxi Province (No. 20011008) and the Youth Foundation of Shanxi Province (No. 20031015).

References

Avent, A. G., Hitchcock, P. B., Lappert, M. F., Sablong, R. \& Severn, J. R. (2004). Organometallics, 23, 2591-2600.

Blystone, S. L. (1989). Chem. Rev. 89, 1663-1679.
Caro, C. F., Lappert, M. F. \& Merle, P. G. (2001). Coord. Chem. Rev. 219-221, 605-663.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hitchcock, P. B., Lappert, M. F., Layh, M., Liu, D.-S., Sablong, R. \& Shun, J. (2000). J. Chem. Soc. Dalton Trans. pp. 2301-2312.

Hitchcock, P. B., Lappert, M. F. \& Wei, X.-H. (2003). J. Organomet. Chem. 683, 83-91.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.
Smith, J. D., Quisenberry, K. T., Hanusa, T. P. \& Brennessel, W. W. (2004). Acta Cryst. C60, m507-m508.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

